If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2-45x-21=0
a = 25; b = -45; c = -21;
Δ = b2-4ac
Δ = -452-4·25·(-21)
Δ = 4125
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4125}=\sqrt{25*165}=\sqrt{25}*\sqrt{165}=5\sqrt{165}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-45)-5\sqrt{165}}{2*25}=\frac{45-5\sqrt{165}}{50} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-45)+5\sqrt{165}}{2*25}=\frac{45+5\sqrt{165}}{50} $
| 4s+26=118 | | 5x-2(-2x+11)=5 | | 6v+39=-25 | | (2x-9)=(5x-9) | | 6x-15=7x+9 | | 2^1-x=3 | | 3^x+5=15 | | 4(4x+4)=2(2x+5)+6 | | 20(2x+3)=-26(x-5) | | 17p+13=10p-13+7p | | p/2-2=-4 | | 2x-40+284-3x=180 | | 8(v+4)-2v=3(2v+3)-11 | | X+24+x=84 | | 7x-3(x-6)=2x-20 | | 3t^2-6t+24=0 | | 3y^=4y+4 | | 13(v+1)-4v=3(3v+4)-16 | | X+14+x+x-2=99 | | r+(r+14)=56 | | 9p+2.4=8.9+8p | | .13(-4+2)=0.05x+6 | | 3x^2+10/2=50 | | 12(p+12)=144 | | (4x-6)/(3)=2x+8 | | 3x-15+12x-14=x-11 | | -19+c/13=8 | | 17v=48+9v | | 1/2h-0.27=1.29 | | m/12=-14 | | 2y+50=150-y | | 3x(1/6x+3)=2x |